
Modeling infant object perception as program induction

J.-Philipp Fränken1∗, Christopher G. Lucas2, Neil R. Bramley2, Steven T. Piantadosi3
1Stanford University, 2The University of Edinburgh, 3University of California, Berkeley, ∗jphilipp@stanford.edu

Abstract
Infants expect physical objects to be rigid and persist
through space and time and in spite of occlusion. De-
velopmentists frequently attribute these expectations to
a “core system” for object recognition. However, it is un-
clear if this move is necessary. If object representations
emerge reliably from general inductive learning mecha-
nisms exposed to small amounts of environment data, it
could be that infants simply induce these assumptions
very early. Here, we demonstrate that a domain gen-
eral learning system, previously used to model concept
learning and language learning, can also induce mod-
els of these distinctive “core” properties of objects after
exposure to a small number of examples. Across eight
micro-worlds inspired by experiments from the develop-
mental literature, our model generates concepts that cap-
ture core object properties, including rigidity and object
persistence. Our findings suggest infant object percep-
tion may rely on a general cognitive process that creates
models to maximize the likelihood of observations.1

Keywords: core knowledge; perception; vector quantization;
program induction; Bayes

Introduction
Object representations serve as compositional building blocks
for higher level cognition in both humans and machines (Xu
& Carey, 1996; Schölkopf et al., 2021; Chen et al., 2022).
Developmental accounts suggest that infants rely on a “core
system” for object representations to perceive the boundaries
of objects, accurately represent their shapes even when they
are partially or fully occluded, and make predictions about ob-
ject movements and their final positions (Spelke & Kinzler,
2007). Having a specific system for representing objects from
an early age can be beneficial because it allows for the incor-
poration of prior knowledge and expectations about objects
and their physical regularities, such as the idea that objects
usually maintain their shape and size as they move (rigidity
principle; Spelke, 1990) and continue to exist and retain their
properties even when occluded (object persistence principle;
Baillargeon, 1987, 2008). Despite converging evidence for the
existence of a core object system in both human infants (e.g.,
Feigenson & Carey, 2003; Spelke, 2022) and non-human ani-
mals (e.g., Chiandetti, Spelke, & Vallortigara, 2015; Hauser &
Carey, 2003), it is not clear if a system specifically designed
for this purpose is necessary or beneficial if object representa-
tions can be learned effectively by a domain general inductive
system from only a small amount of data.

1Project page: janphilippfranken.github.io/object-perception

t
t+1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Input

Program

Output

F = (� (move x 1))

Fig. 2 | Example program evaluation.

assigned to the small object, a discrete code of 4 is assigned to the large object, and code 669

is assigned to the background (code assignments are arbitrary and are selected for illustration70

purposes only). From the initial codebook, we then obtain two ‘bitmasks’, one for each object.71

Bitmasks can be thought of as one-hot encodings of objects and they serve as the input data to72

our programs. An example program evaluation is shown in Figure 2. Here, the program inputs73

the bitmask representation of the small object from Figure 1C and moves the object by 1 on the74

x dimension to produce the output on the right.75

Table 1 lists the full set of object regularities that we consider. The selected functions76

correspond to a relevant but limited set of possible physical regularities that objects may exhibit.77

The first group of operations (Bitmask functions) allows for manipulation of an object’s position78

in 2-D space by moving a bitmask on the x and y dimensions (see Figure 2, for an example). The79

function (constant obj) keeps an object fixed and (complement obj) computes the bitwise80

not of an object (essentially flipping all values in a bitmask such that 1 ! 0 and 0 ! 1). The81

second group of operations (Number functions) input the current timestep t 2 {1, ..., 10} (i.e.82

the frame number presented to the model) and outputs a transformation of the input which can be83

any composition of the primitives operating on numbers, such as (add (modulus (t 2)) 3)84

which returns the remainder of t and 2 and adds 3. The final group of operations allows for the85

computation of the bitwise or (union obj obj) and bitwise and (intersection obj obj)86

between two objects. For example, if (intersection obj obj) was applied to the input and87

5

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

VQ-VAEimages 𝑥
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Input

Program

Output

F = (� (move x 1))

Fig. 2 | Example program evaluation.

assigned to the small object, a discrete code of 4 is assigned to the large object, and code 669

is assigned to the background (code assignments are arbitrary and are selected for illustration70

purposes only). From the initial codebook, we then obtain two ‘bitmasks’, one for each object.71

Bitmasks can be thought of as one-hot encodings of objects and they serve as the input data to72

our programs. An example program evaluation is shown in Figure 2. Here, the program inputs73

the bitmask representation of the small object from Figure 1C and moves the object by 1 on the74

x dimension to produce the output on the right.75

Table 1 lists the full set of object regularities that we consider. The selected functions76

correspond to a relevant but limited set of possible physical regularities that objects may exhibit.77

The first group of operations (Bitmask functions) allows for manipulation of an object’s position78

in 2-D space by moving a bitmask on the x and y dimensions (see Figure 2, for an example). The79

function (constant obj) keeps an object fixed and (complement obj) computes the bitwise80

not of an object (essentially flipping all values in a bitmask such that 1 ! 0 and 0 ! 1). The81

second group of operations (Number functions) input the current timestep t 2 {1, ..., 10} (i.e.82

the frame number presented to the model) and outputs a transformation of the input which can be83

any composition of the primitives operating on numbers, such as (add (modulus (t 2)) 3)84

which returns the remainder of t and 2 and adds 3. The final group of operations allows for the85

computation of the bitwise or (union obj obj) and bitwise and (intersection obj obj)86

between two objects. For example, if (intersection obj obj) was applied to the input and87

5

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

1
1

0

0

0
1

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

0

0
0

0
0

0
0

0

t

t+1

Figure 1: Illustration of inference pipeline. We take short videos
(ten frames) as input. These are preprocessed into a sequence of
discrete feature maps using vector quantization followed by one-hot
encodings on each feature map to obtain Boolean tensors (or “bit-
masks”). Bitmasks are then processed by a generic Bayesian con-
cept learning algorithm to induce programs that parsimoniously ex-
plain the underlying structure in the discretized data. For example,
evaluating the program F will move (“roll”) the upper bitmask (t) by
1 on the x dimension predicting the bitmask shown below (t+1).

Infant object perception as program induction

We assume that object representations can be used to effi-
ciently compress and discretize perceptual input (e.g., visual).
As such, object representations might arise from reasoning
about the physical regularities (Spelke, 1990) or “invariants”
(Sloman & Lagnado, 2004) in one’s environment that facili-
tate predictions about its future states. Inspired by recent ad-
vances in Bayesian program learning (Ellis et al., 2021; Tang
& Ellis, 2022; Yang & Piantadosi, 2022) and intuitive physics
(Piloto, Weinstein, Battaglia, & Botvinick, 2022), we present
an idealized model (Figure 1) that discovers object represen-
tations and their physical regularities from short sequences
of 2D images (which should generalize to 3D scene projec-
tions). Our model can be summarized in four steps: (1) Extract
a discrete ”codebook” representation c for each image x us-
ing a VQ-VAE (Van Den Oord, Vinyals, et al., 2017), a simple
tool for efficient image encoding without relying on semantic
object assumptions → (2) Apply n deterministic one-hot en-
codings to each discrete feature map c to generate Boolean
tensor representations (”bitmasks”), with n representing the
number of unique codes in c → (3) Use a Bayesian concept
learning algorithm to process the resulting bitmasks and gen-
erate programs that parsimoniously explain the structure in
the data → (4) Use discovered programs to improve the rep-
resentation by searching for structure in residuals or imput-
ing missing data to maximize likelihood. The final two steps
are repeated until convergence or until a time-out threshold
is reached. To discover programs, our model generates com-
positions of functions from the primitives listed in Table 1 and
computes posterior distributions over programs using Bayes’
rule: P(H | D) ∝ P(H)P(D | H). The prior probability of a pro-
gram P(H) is determined by a probabilistic context-free gram-
mar (PCFG) based on the operations in Table 1. For likelihood
P(D | H) we assume a standard exponential loss function.
We use stochastic (MCMC) sampling as in Goodman, Tenen-
baum, Feldman, and Griffiths (2008) to search for programs.

https://janphilippfranken.github.io/object-perception/

Table 1. Assumed primitive functions

Type Primitives

Number functions (add n), (sub n), (mult n),
(div n), (mod n), (neg), (const)

Set functions (union), (intersection)

Bitmask functions (move x n), (move y n),
(complement), (const)

The space of programs consists of all compositions of these functions
that respect the input and output types.

Experiments
We evaluate our model’s ability to learn object representations
and their regularities across eight micro-worlds inspired by ex-
periments from the developmental literature. We use ten im-
ages for each probe. To demonstrate our approach, we first
examine a baseline probe including simple left-right move-
ment (Fig. 2a). To show that we can also handle natural cat-
egories that violate standard object properties, we next con-
sider a “melting” block (i.e., a block that is shrinking vertically;
Fig. 2b). We then test the ability of our approach to discover,
from sparse input, principles that are often considered as core
knowledge, including the widely studied principles of object
persistence (Baillargeon, 2008; Piloto et al., 2022; Fig. 2c–d)
and rigidity (Spelke, 1990; Kemp & Xu, 2008; Fig. 2e–g) . We
additionally include an example of unchangeableness follow-
ing occlusion (Baillargeon & Carey, 2012; Fig. 2h).

Results
Panels a–b in Fig. 2 show that our model can find programs
capturing simple object regularities such as constant left-right

m
ov
e-
di
sa
pp
ea
r

m
ov
e-
pe
rs
is
t

m
ov
e-
bo
th

m
ov
e-
sm
al
l

m
ov
e-
si
m
pl
e

m
el
t

m
ov
e-
la
rg
e

no
-c
ha
ng
e

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

m
ov
e-
di
sa
pp
ea
r

m
ov
e-
pe
rs
is
t

m
ov
e-
bo
th

m
ov
e-
sm
al
l

m
ov
e-
si
m
pl
e

m
el
t

m
ov
e-
la
rg
e

no
-c
ha
ng
e

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

m
ov
e-
di
sa
pp
ea
r

m
ov
e-
pe
rs
is
t

m
ov
e-
bo
th

m
ov
e-
sm
al
l

m
ov
e-
si
m
pl
e

m
el
t

m
ov
e-
la
rg
e

no
-c
ha
ng
e

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

m
ov
e-
di
sa
pp
ea
r

m
ov
e-
pe
rs
is
t

m
ov
e-
bo
th

m
ov
e-
sm
al
l

m
ov
e-
si
m
pl
e

m
el
t

m
ov
e-
la
rg
e

no
-c
ha
ng
e

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

Our goal is to learn object representations and their regularities by analysing short video51

clips without making any assumptions about the presence of objects beforehand. We propose52

that object representations can be learned by combining primitives in a ‘language of thought’53

(LoT)38 in order to create mental causal programs that can describe the regularities of objects.54

Two examples are shown in Figure 1A. The top scene shows a single large object moving from55

left to right over ten frames, while the bottom scene shows a small object moving from left to56

right behind a larger object, resulting in partial and full occlusion. The regularity of the object57

in the top scene can be captured by the following program:58

F = (� (move x n)) (1)

F = (� (const)) (2)

F = (� (intersection (move y (neg n)) (const))) (3)

F = (� (move x 1)) (4)

F = (� obj (move x 1 obj)) (5)

The program F uses � to bind obj, identifies the target dimension x and moves obj by 159

on x (i.e. from left to right). Similarly, the two object regularities shown in the bottom scene of60

Figure 1A can be described by:61

F = (� obj (constant obj)) (6)

4

a) b)

c) d)

e) f)

g) h)

Figure 2: Illustration of tested micro-worlds and learning curves for
the model. The x axis corresponds to the number of samples (i.e.,
the length of the MCMC chain) and the y axis corresponds to the log-
likelihood of the final program(s) from a given chain averaged across
100 independent runs. Grey shadings correspond to standard error.
Full sequence for each micro-world and target program(s) are shown
at the bottom of each panel.

movement, which can be expressed as (λ (move x n))
as well as “melting” which can be expressed as
(λ (intersection (move y (neg n)) (const))).
Figure 2c shows that this ability still holds for an object that
moves behind an occluder. Figure 3a shows the probability
of the occluded object for frame 5 in Figure 2c. Consistent
with a flattening learning curve at 1000 samples, the model is
learning representations at around 1000 samples. The rep-
resentation of the occluded object was obtained by imputing
its representation using a program such as (λ (move x n))
which will have a maximum likelihood if it keeps representing
the object during occlusion. In line with this idea, the example
in Figure 2d has a weaker learning curve as the object
does not reappear, making it harder to find a physically
plausible regularity of the object. Overall, these findings are
consistent with increased surprise in infants when objects
suddenly disappear or reappear after obstacles as well as
their tendency to keep representing objects during occlusion
(Baillargeon, 2008).

10 100 100010 100 100010 100 1000

a) b)

Figure 3: a) Probability of predicted object (greyscale) during occlu-
sion for different numbers of samples. b) Average object counts (±
SEM) for the three example tests of rigidity.

Results in Figure 2e–g demonstrate our model’s ability to
interpret ambiguous scenes involving two blocks of differ-
ent sizes similar to how infants do (Kestenbaum, Termine,
& Spelke, 1987; Spelke, von Hofsten, & Kestenbaum, 1989).
Specifically, our model provides a single-object interpretation
for the example shown in Figure 2e and a two-object interpre-
tation for the examples shown in Figure 2f-g, which require
two regularities (both (λ (move x n)) and (λ (const))).
Average object counts for different numbers of samples are
shown in Figure 3b, and stable performance is achieved
around 1000 sample. Our final example (Figure 2h) demon-
strates the concept of unchangeableness where an object is
occluded by a plank moving across the scene (we do not
model the plank’s regularity). Following the same imputation
approach as in Figure 2c, our model can efficiently learn the
objects regularity from a small amount of data.

Discussion
Object representations form a fundamental aspect of human
and machine cognition. We proposed that these representa-
tions can be learned by domain general learning system that
aims to induce symbolic programs to maximize the likelihood
of observations. A limitation of the present proof-of-concept
results is that we did not jointly train the VQ-VAE and search
for programs but instead trained the VQ-VAE prior to search
to obtain discrete codebooks. Future work should thus ex-
plore joint end-to-end learning of both the VQ-VAE and pro-
gram search to test our model in more complex scenes (e.g.,
Piloto et al., 2022; Mao, Yang, Zhang, Goodman, & Wu, 2022).

References

Baillargeon, R. (1987). Object permanence in 31/2-and 41/2-
month-old infants. Developmental psychology , 23(5), 655.

Baillargeon, R. (2008). Innate ideas revisited: For a principle
of persistence in infants’ physical reasoning. Perspectives
on Psychological Science, 3(1), 2–13.

Baillargeon, R., & Carey, S. (2012). Core cognition and
beyond: The acquisition of physical and numerical knowl-
edge.

Chen, H., Venkatesh, R., Friedman, Y., Wu, J., Tenenbaum,
J. B., Yamins, D. L., & Bear, D. M. (2022). Unsupervised
segmentation in real-world images via spelke object infer-
ence. arXiv preprint arXiv:2205.08515.

Chiandetti, C., Spelke, E. S., & Vallortigara, G. (2015). Inex-
perienced newborn chicks use geometry to spontaneously
reorient to an artificial social partner. Developmental Sci-
ence, 18(6), 972–978.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L.,
Hewitt, L., . . . Tenenbaum, J. B. (2021). Dreamcoder:
Bootstrapping inductive program synthesis with wake-sleep
library learning. In Proceedings of the 42nd acm sigplan
international conference on programming language design
and implementation (pp. 835–850).

Feigenson, L., & Carey, S. (2003). Tracking individuals via
object-files: evidence from infants’ manual search. Devel-
opmental Science, 6(5), 568–584.

Goodman, N., Tenenbaum, J., Feldman, J., & Griffiths, T.
(2008). A rational analysis of rule-based concept learning.
Cognitive Science, 32(1), 108–154.

Hauser, M. D., & Carey, S. (2003). Spontaneous represen-
tations of small numbers of objects by rhesus macaques:
Examinations of content and format. Cognitive Psychology ,
47 (4), 367–401.

Kemp, C., & Xu, F. (2008). An ideal observer model of infant
object perception. Advances in neural information process-
ing systems, 21.

Kestenbaum, R., Termine, N., & Spelke, E. S. (1987). Per-
ception of objects and object boundaries by 3-month-old in-
fants. British journal of developmental psychology , 5(4),
367–383.

Mao, J., Yang, X., Zhang, X., Goodman, N., & Wu, J. (2022).
Clevrer-humans: Describing physical and causal events the
human way. In Thirty-sixth conference on neural information
processing systems datasets and benchmarks track.

Piloto, L. S., Weinstein, A., Battaglia, P., & Botvinick, M.
(2022). Intuitive physics learning in a deep-learning model
inspired by developmental psychology. Nature human be-
haviour , 6(9), 1257–1267.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbren-
ner, N., Goyal, A., & Bengio, Y. (2021). Toward causal
representation learning. Proceedings of the IEEE , 109(5),
612–634.

Sloman, S., & Lagnado, D. A. (2004). Causal invariance in
reasoning and learning. Psychology of learning and moti-
vation, 44, 287–326.

Spelke, E. S. (1990). Principles of object perception. Cogni-
tive science, 14(1), 29–56.

Spelke, E. S. (2022). What babies know: Core knowledge and
composition volume 1 (Vol. 1). Oxford University Press.

Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. De-
velopmental science, 10(1), 89–96.

Spelke, E. S., von Hofsten, C., & Kestenbaum, R. (1989). Ob-
ject perception in infancy: Interaction of spatial and kinetic
information for object boundaries. Developmental Psychol-
ogy , 25(2), 185.

Tang, H., & Ellis, K. (2022). From perception to programs:
regularize, overparameterize, and amortize. arXiv preprint
arXiv:2206.05922.

Van Den Oord, A., Vinyals, O., et al. (2017). Neural dis-
crete representation learning. Advances in neural informa-
tion processing systems, 30.

Xu, F., & Carey, S. (1996). Infants’ metaphysics: The case of
numerical identity. Cognitive psychology , 30(2), 111–153.

Yang, Y., & Piantadosi, S. T. (2022). One model for the learn-
ing of language. Proceedings of the National Academy of
Sciences, 119(5), e2021865119.

